Publications
Zou, M.; Emge, T. J.; Waldie, K. M. ChemRxiv. DOI: 10.26434/chemrxiv-2023-l58hm
16. Controlled-Potential Electrolysis for Evaluating Molecular Electrocatalysts
Katipamula, S.; White, N. M.; Waldie, K. M. Chem Catalysis 2023, 3, 100561. DOI: 10.1016/j.checat.2023.100561. Invited article as part of the Women in Catalysis Special Issue.
15. Design of a Minimal di-Nickel Hydrogenase Peptide
Mancini, J. A.; Pike, D. H.; Poudel, S.; Timm, J.; Tyryshkin, A. M.; Siess, J.; Molinaro, P.; McCann, J. J.; Waldie, K. M.; Koder, R. L.; Falkowski, P. G.; Nanda, V. Sci. Adv. 2023, 9, eabq1990. DOI: 10.1126/sciadv.abq1990
14. Recent Progress in the Development of Molecular Electrocatalysts for Formate Oxidation
Waldie, K. M.; Katipamula, S. Catalysis Research 2022, 2, 15. DOI: 10.21926/cr.2201006
Cook, A. W.; Emge, T. J.; Waldie, K. M. Inorg. Chem. 2021, 60, 7372-7380. DOI: 10.1021/acs.inorgchem.1c00563
12. Approaches to Controlling Homogeneous Electrochemical Reduction of Carbon Dioxide
Barrett, J. A.; Brunner, F. M.; Cheung, P. L.; Kubiak, C. P.; Lee, G. L.; Miller, C. J.; Waldie, K. M.; Zhanaidarova, A. In Carbon Dioxide Electrochemistry: Homogeneous and Heterogeneous Catalysis; Robert, M.; Costentin, C.; Daasbjerg, K., Eds.; Energy and Environment Series No. 28; Royal Society of Chemistry, 2021; pp 1-66. DOI: 10.1039/9781788015844-00001
11. Molecular Electrocatalysts for Alcohol Oxidation: Insights and Challenges for Catalyst Design
Cook, A. W.; Waldie, K. M. ACS Appl. Energy Mater. 2020, 3, 38-46. DOI: 10.1021/acsaem.9b01820. Invited article as part of the Young Investigator Forum Special Issue.
Prior Publications
Ostericher, A. L.; Waldie, K. M.; Kubiak, C. P. ACS Catal. 2018, 8, 9596-9603. DOI: 10.1021/acscatal.8b02922
McLoughlin, E.; Waldie, K. M.; Ramakrishnan, S.; Waymouth, R. M. J. Am. Chem. Soc. 2018, 140, 13233-13241. DOI: 10.1021/jacs.8b06156
Waldie, K. M.; Brunner, F. M.; Kubiak, C. P. ACS Sustainable Chem. Eng. 2018, 6, 6841-6848. DOI: 10.1021/acssuschemeng.8b00628
7. Hydricity of Transition Metal Hydrides: Thermodynamic Conditions for CO2 Reduction
Waldie, K. M.; Ostericher, A. L.; Reineke, M. H.; Sasayama, A. F.; Kubiak, C. P. ACS Catal. 2018, 8, 1313-1324. DOI: 10.1021/acscatal.7b03396
6. Cyclopentadienyl Cobalt Complexes as Precatalysts for Electrocatalytic Hydrogen Evolution
Waldie, K. M.; Kim, S.-K.; Ingram, A. J.; Waymouth, R. M. Eur. J. Inorg. Chem. 2017, 2755-2761. DOI: 10.1002/ejic.201700188
5. Multielectron Transfer at Cobalt: Influence of the Phenylazopyridine Ligand
Waldie, K. M.; Ramakrishnan, S.; Kim, S.-K.; Maclaren, J. K.; Chidsey, C. E. D.; Waymouth, R. M. J. Am. Chem. Soc. 2017, 139, 4540-4550. DOI: 10.1021/jacs.7b01047
4. Electrocatalytic Alcohol Oxidation with Ruthenium Transfer Hydrogenation Catalysts
Waldie, K. M.; Flajslik, K. R.; McLoughlin, E.; Chidsey, C. E. D.; Waymouth, R. M. J. Am. Chem. Soc. 2017, 139, 738-748. DOI: 10.1021/jacs.6b09705
3. Experimental and Theoretical Study of CO2 Insertion into Ruthenium Hydride Complexes
Ramakrishnan, S.; Waldie, K. M., Warnke, I.; De Crisci, A. G.; Batista, V. S.; Waymouth, R. M.; Chidsey, C. E. D. Inorg. Chem. 2016, 55, 1623-1632. DOI: 10.1021/acs.inorgchem.5b02556
2. Redox-Active Bridging Ligands based on Indigo Diimine ("Nindigo") Derivatives
Nawn, G.; Waldie, K. M.; Oakley, S. R.; Peters, B. D.; Mandel, D.; Patrick, B. O.; McDonald, R.; Hicks, R. G. Inorg. Chem. 2011, 50, 9826-9837. DOI: 10.1021/ic200388y
Oakley, S. R.; Nawn, G.; Waldie, K. M.; MacInnis, T. D.; Patrick, B. O.; Hicks, R. G. Chem. Comm. 2010, 46, 6753-6755. DOI: 10.1039/C0CC01736A