top of page

Publications

21. Nanospike Nickel Iron Oxide as a Low-Cost, Efficient Electrocatalyst for the Oxygen Evolution Reaction 

Teeluck, K. M.; Carignan, G. M.; Waldie K. M. In Preparation. 

20. Redox-Active Ligand Promoted Electrophile Addition at Cobalt

Zou, M.; Waldie, K. W. In Preparation.

19. Electrocatalytic Formate Oxidation by Cobalt-Phosphine Complexes

Katipamula, S.; Cook, A. W.; Niedzwiecki, I.; Emge, T. J.; Waldie, K. W. Under Review. 

18. Metal–Ligand Proton Tautomerism, Electron Transfer, and C(sp3)–H Activation by a 4-Pyridinyl-Pincer Iridium Hydride Complex

Bhatti, T. M.; Kumar, A.; Parihar, A.; Moncy, H. K.; Emge, T. J.; Waldie, K. M.; Hasanayn, F.; Goldman, A. S. J. Am. Chem. Soc. 2023, 145, 18296-18306. DOI: 10.1021/jacs.3c03376

ja3c03376_0021.jpeg

17. Two-Electron Redox Tuning of Cyclopentadienyl Cobalt Complexes Enabled by the Phenylenediamide Ligand

Zou, M.; Emge, T. J.; Waldie, K. M. Inorg. Chem. 202362, 10397-10407. DOI: 10.1021/acs.inorgchem.3c01283

Previous version deposited on ChemRxiv. DOI: 10.26434/chemrxiv-2023-l58hm

ic3c01283_0009.jpeg

16. Controlled-Potential Electrolysis for Evaluating Molecular Electrocatalysts

Katipamula, S.; White, N. M.; Waldie, K. M. Chem Catal. 20233, 100561. DOI: 10.1016/j.checat.2023.100561. Invited article as part of the Women in Catalysis Special Issue.

1-s2.0-S2667109323000696-fx1_lrg.jpg

15. Design of a Minimal di-Nickel Hydrogenase Peptide

Mancini, J. A.; Pike, D. H.; Poudel, S.; Timm, J.; Tyryshkin, A. M.; Siess, J.; Molinaro, P.; McCann, J. J.; Waldie, K. M.; Koder, R. L.; Falkowski, P. G.; Nanda, V. Sci. Adv. 2023, 9, eabq1990. DOI: 10.1126/sciadv.abq1990 

14. Recent Progress in the Development of Molecular Electrocatalysts for Formate Oxidation

Waldie, K. M.; Katipamula, S. Catalysis Research 20222, 15. DOI: 10.21926/cr.2201006

10.21926_cr.2201006.png

13. Insights into Formate Oxidation by a Series of Cobalt Piano-Stool Complexes Supported by Bis(phosphino)amine Ligands

Cook, A. W.; Emge, T. J.; Waldie, K. M. Inorg. Chem. 2021, 60, 7372-7380. DOI: 10.1021/acs.inorgchem.1c00563

ic1c00563_0011.jpeg

12. Approaches to Controlling Homogeneous Electrochemical Reduction of Carbon Dioxide 

Barrett, J. A.; Brunner, F. M.; Cheung, P. L.; Kubiak, C. P.; Lee, G. L.; Miller, C. J.; Waldie, K. M.; Zhanaidarova, A. In Carbon Dioxide Electrochemistry: Homogeneous and Heterogeneous Catalysis; Robert, M.; Costentin, C.; Daasbjerg, K., Eds.; Energy and Environment Series No. 28; Royal Society of Chemistry, 2021; pp 1-66. DOI: 10.1039/9781788015844-00001 

11. Molecular Electrocatalysts for Alcohol Oxidation: Insights and Challenges for Catalyst Design

Cook, A. W.; Waldie, K. M. ACS Appl. Energy Mater. 2020, 3, 38-46. DOI: 10.1021/acsaem.9b01820. Invited article as part of the Young Investigator Forum Special Issue.

Prior Publications

10. Utilization of Thermodynamic Scaling Relationships in Hydricity to Develop Nickel HER Electrocatalysts with Weak Acids and Low Overpotentials

Ostericher, A. L.; Waldie, K. M.; Kubiak, C. P. ACS Catal20188, 9596-9603. DOI: 10.1021/acscatal.8b02922

9.  Protonation of a Cobalt Phenylazopyridine Complex at the Ligand Yields a Proton, Hydride, and Hydrogen Atom Transfer Reagent

McLoughlin, E.; Waldie, K. M.; Ramakrishnan, S.; Waymouth, R. M. J. Am. Chem. Soc2018140, 13233-13241. DOI: 10.1021/jacs.8b06156

8.  Transition-Metal Hydride Catalysts for Sustainable Interconversion of CO2 and Formate: Thermodynamic and Mechanistic Considerations

Waldie, K. M.; Brunner, F. M.; Kubiak, C. P. ACS Sustainable Chem. Eng. 20186, 6841-6848. DOI: 10.1021/acssuschemeng.8b00628

7.  Hydricity of Transition Metal Hydrides: Thermodynamic Conditions for CO2 Reduction

Waldie, K. M.; Ostericher, A. L.; Reineke, M. H.; Sasayama, A. F.; Kubiak, C. P. ACS Catal. 20188, 1313-1324. DOI: 10.1021/acscatal.7b03396

6.  Cyclopentadienyl Cobalt Complexes as Precatalysts for Electrocatalytic Hydrogen Evolution

Waldie, K. M.; Kim, S.-K.; Ingram, A. J.; Waymouth, R. M. Eur. J. Inorg. Chem. 2017, 2755-2761. DOI: 10.1002/ejic.201700188

5.  Multielectron Transfer at Cobalt: Influence of the Phenylazopyridine Ligand

Waldie, K. M.; Ramakrishnan, S.; Kim, S.-K.; Maclaren, J. K.; Chidsey, C. E. D.; Waymouth, R. M. J. Am. Chem. Soc. 2017139, 4540-4550. DOI: 10.1021/jacs.7b01047

4.  Electrocatalytic Alcohol Oxidation with Ruthenium Transfer Hydrogenation Catalysts

Waldie, K. M.; Flajslik, K. R.; McLoughlin, E.; Chidsey, C. E. D.; Waymouth, R. M. J. Am. Chem. Soc. 2017139, 738-748. DOI: 10.1021/jacs.6b09705

3.  Experimental and Theoretical Study of CO2 Insertion into Ruthenium Hydride Complexes

Ramakrishnan, S.; Waldie, K. M., Warnke, I.; De Crisci, A. G.; Batista, V. S.; Waymouth, R. M.; Chidsey, C. E. D. Inorg. Chem. 201655, 1623-1632. DOI: 10.1021/acs.inorgchem.5b02556

2.  Redox-Active Bridging Ligands based on Indigo Diimine ("Nindigo") Derivatives

Nawn, G.; Waldie, K. M.; Oakley, S. R.; Peters, B. D.; Mandel, D.; Patrick, B. O.; McDonald, R.; Hicks, R. G. Inorg. Chem. 201150, 9826-9837. DOI: 10.1021/ic200388y

1.  “Nindigo”: Synthesis, Coordination Chemistry, and Properties of Indigo Diimines as a New Class of Functional Bridging Ligands

Oakley, S. R.; Nawn, G.; Waldie, K. M.; MacInnis, T. D.; Patrick, B. O.; Hicks, R. G. Chem. Comm. 201046, 6753-6755. DOI: 10.1039/C0CC01736A

bottom of page